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1 Introduction

When allowing an observation o to be partial in the sense that additional (unrecorded) inputs

may have been received during the time of observation, we showed that reasoning about the

agent is possible by adding intermediate inputs to the observation, instantiate them by new

variables yielding an observation o′ in the traditional sense. The rational explanation of o′

then provides a basis for reasoning about A. The question then is how many intermediate

inputs to assume at which positions. We showed that an additional intermediate input may

cause the weakest acceptable core belief to become yet weaker. Consequently, we want to

assume enough intermediate inputs in order to get the overall weakest acceptable core in

order to draw safe conclusions as to which revision inputs are rejected by the agent.

Here we are interested in the case where the positions of the intermediate inputs are known.

That is, we know when in the observation additional inputs were received but not how many.

In [1] we provided first results on an upper bound. This paper improves these results. In

particular it reduces the bound given by Proposition 3.26 (upperboundii). That proposition

entails that the number of intermediate inputs that need to be assumed at a certain position

in the observation is bounded by the number of all recorded revision inputs following that

position. We will show that the number of additional inputs at one position need not exceed

the number of recorded inputs following that position but before the next block of intermediate

inputs.

The number of intermediate inputs is thus always less than the number of recorded inputs.

As a rule of thumb we could say that one intermediate input per recorded one suffices. Using

Proposition 3.26 this number could be much greater. Consider one hundred positions for

intermediate inputs near the beginning of an observation followed by one million recorded
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inputs. The original result would call for about a hundred million intermediate inputs. The

improved version reduces that number to about one million.

As a consequence, the result presented here also generalises Proposition 3.23 (oneiienough)

in [1] which states that being allowed an arbitrary number of intermediate inputs at any

position in the observation, a single input between any two recorded inputs suffices. There

is only one recorded input between any two consecutive positions for intermediate inputs.

2 Basic Idea

The actual revision history of the agent whose core belief is N looks like this:

(α1, . . . , αk, ϕ01, . . . , ϕ0n0 , ψ11, . . . , ψ1m1 , ϕ11, . . . , ϕ1n1 , ψ21, . . . , ψ2m2 , . . . , ϕl1, . . . , ϕlnl
)

The observation starts at the point where ϕ01 was received and contains the recorded inputs

ϕ01, . . . , ϕ0n0 , ϕ11, . . . , ϕ1n1 , . . . , ϕl1, . . . , ϕlnl
but does not contain the inputs ψij . These have

to be dealt with using intermediate inputs. α1, . . . , αk are the formulae received by A before

the observation started.

The idea is to replace each block of unrecorded inputs ψi1, . . . , ψimi by (at most) ni formulae

such that the beliefs and non-beliefs for all recorded revision inputs in the observation stay

the same. Note that ni is the number of recorded revision inputs following that block of

intermediate inputs before the next block of intermediate inputs starts. As we assume to

know the positions of the intermediate inputs, we know all nj but not the mj .

Each block ψi1, . . . , ψimi will be replaced by a logical chain λi1, . . . , λini ,
1 the idea being that

each of the recorded inputs ϕij immediately following that block will select one element of

the chain such that the exactly the same beliefs are generated from that chain alone. That

is, revision inputs recorded (or not recorded) earlier are made redundant. We will replace

each block independently of the others. A’s revision history and the modified one, which

yields the same beliefs for all recorded revision inputs, look as follows.

(α1, . . . , αk, ϕ01, . . . , ϕ0n0 , ψ11, . . . , ψ1m1 , ϕ11, . . . , ϕ1n1 , ψ21, . . . , ψ2m2 , . . . , ϕl1, . . . , ϕlnl
)

(α1, . . . , αk, ϕ01, . . . , ϕ0n0 , λ11, . . . , λ1n1 , ϕ11, . . . , ϕ1n1 , λ21, . . . , λ2n2 , . . . , ϕl1, . . . , ϕlnl
)

Two things will need to be shown: (i) such logical chains do exist and (ii) replacing a block

by a logical chain will have no negative effect for beliefs of later blocks. Note that when

calculating the beliefs using f , not the original formulae of the revision history are used, but

the formulae from the logical chains.

1Note that mi could be much greater than ni and that the length of this logical chain corresponds to the

claim that one intermediate input per recorded one before a new block of intermediate inputs.
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The structure of the λij will be given in Section 4 along with the proofs of the existence of

the logical chains and that the beliefs are indeed the same. But what do we win by this

transformation? We have an observation of A which is based on its revision history. We

know the positions of the intermediate inputs, i.e. we know all n1, . . . , nl, but we do not

know the number of intermediate inputs, i.e. we do not know any mj . The transformation

now tells us that there are intermediate inputs (the λij of which we know number and

positions!) that yield exactly the same beliefs for each recorded input. Applying Proposition

3.6 (nxworksgen) in [1] tells us that we can replace these unknown intermediate inputs by new

propositional variables and be guaranteed that an explanation [ρR,N′] is found. Propositions

3.12 (implynxcoregen) and 3.13 (weakestnxcoregen) in [1] further yield that A’s core belief

must entail N′. We can also use the explanation to do hypothetical reasoning about A’s

beliefs. However, note that for reasoning about future beliefs additional intermediate inputs

must be added to the last block of intermediate inputs. Otherwise there would be a violation

of the assumption that there is an intermediate input for each recorded one following that

block.

3 Auxiliary Results

The following is a generalisation of Proposition 2.15 (entailprefix) in [1].

Proposition 1. Either f (σ · ρ1 · ρ2 · α) ` ¬f (ρ1 · α) or f (σ · ρ1 · ρ2 · α) ` f (ρ1 · α)

Proof. f (σ · ρ1 · ρ2 · α) ≡ f (σ · f (ρ1 · ρ2 · α)) (Proposition 2.3 (fseqtopair) in [1]). By defini-

tion of f this formula entails f (ρ1 · ρ2 · α) and by Proposition 2.15 (entailprefix) in [1] this

formula in turn entails either ¬f (ρ1 · α) or f (ρ1 · α).

The following proposition will help us to show that the encodings we use for the intermediate

inputs do not have any negative effects.

Proposition 2. Let σ = (β1, . . . , βm) be some sequence of formulae and N a formula. Let iσj

denote (βi, . . . , βj) for all i ≤ j and let σj denote (β1, . . . , βj). Then for all i ≤ j ≤ k ≤ m:

f (σk · N) ` f (iσj · N)→ f (σj · N) or f (σk · N) is inconsistent with f (iσj · N)→ f (σj · N).

Proof. Follows almost directly from Proposition 2.15 (entailprefix) in [1] and Proposition 1.

Let σ · ρ1 · ρ2 = σk, ρ1 = iσj and σ · ρ1 = σj . Then we immediately get f (σk · N) ` f (iσj · N)

or f (σk · N) ` ¬f (iσj · N).

Analogously Propositions 2.15 (entailprefix) in [1] yields f (σk · N) ` f (σj · N) or f (σk · N) `
¬f (σj · N). And for any combination f (σk · N) either entails the implication or is inconsistent

with it.
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4 Main Results

Let us start by describing the principal structure of a block of replaced intermediate inputs.

Focussing on the part that interests us — a single block of intermediate inputs and the

recorded revision inputs immediately following — the true and the modified revision history

of A are: (. . . , ψi1, . . . , ψimi , ϕi1, . . . , ϕini , . . . ) and (. . . , λi1, . . . , λini , ϕi1, . . . , ϕini , . . . ). Let

σ denote (. . . , ψi1, . . . , ψimi). Let ι denote (ϕi1, . . . , ϕin1) and ιj the prefix of that sequence

with length j, i.e. ιj = (ϕi1, . . . , ϕij). Further, let S = {1, . . . , ni}. ι is the sequence of

recorded revision inputs for which we want to generate the same beliefs, σ is the sequence

of all inputs received up to that point. For readability we will omit the first of the double

indices and write λj instead of λij , ϕn instead of ϕini etc. Thus i will be used as a regular

variable from now on.

Each λj will have the following form: λj =
∧

i∈Sj

(f (ιi · N) → f (σ · ιi · N)) for a suitable

Sj ⊆ S. We demand that Sn = S, that Sk ⊆ Sj for all k ≤ j and that i ∈ Sj−1 in case

f (ιi · N) happens to be inconsistent with λj . We will later show that these demands can be

met and first try to give an intuition of what the λj mean.

Enforcing the subset relation among the Sj amounts to (λ1, . . . , λn) being a logical chain.

The beliefs after receiving the revision input ϕi are f (σ · (ϕ1, . . . , ϕi,N)) = f (σ · ιi · N) =

f (σ · f (ιi · N)). The suffix of σ is (ψi1, . . . , ψimi). For the modified revision history it will

be analogous for some sequence σ′. Note that the suffix of σ′ will be the logical chain

(λ1, . . . , λn). Before going through the logical chain the formula f (ιi · N) will have been

collected. Then exactly one λj is selected — f (ιi · N) will be inconsistent with the λk, k > j

and those for k < j can be ignored as they are already entailed. Due to our demands

i ∈ Sj and thus λj ` f (ιi · N) → f (σ · ιi · N). Now, f (ιi · N) ∧ (f (ιi · N) → f (σ · ιi · N)) `
f (σ · ιi · N). That is, after processing the logical chain, the formula collected so far already

entails the beliefs we are after.

We still need to show that (i) after processing the logical chain, nothing but f (σ · ιi · N) is

entailed, i.e. f ((λ1, . . . , λn) · ιi · N) ≡ f (σ · ιi · N), that (ii) going through the rest of σ′ does

not add any further beliefs and (iii) that a logical chain satisfying the demand mentioned

above does indeed exist.

4.1 f ((λ1, . . . , λn) · ιi · N) ≡ f (σ · ιi · N)

As mentioned before, exactly one λj is selected from (λ1, . . . , λn). The others are either

inconsistent with f (ιi · N) or already entailed by λj . Consequently f ((λ1, . . . , λn) · ιi · N) ≡
λj ∧ f (ιi · N) and we need to show λj ∧ f (ιi · N) ≡ f (σ · ιi · N). We already showed that

4



λj ` f (ιi · N) → f (σ · ιi · N) and thus λj ∧ f (ιi · N) ` f (σ · ιi · N). We still need to show

f (σ · ιi · N) ` λj ∧ f (ιi · N). We will do so by showing that nothing but f (σ · ιi · N) can be

inferred from λj ∧ f (ιi · N).

By the structure of λj , we know λj∧f (ιi · N) ≡ f (σ · ιi · N)∧
∧

k∈Sj\{i}
(f (ιk · N)→ f (σ · ιk · N))

For k < i we immediately have that f (σ · ιi · N) ` f (ιk · N) → f (σ · ιk · N) (Propostion 2;

σk = σ · ιi, σj = σ · ιk, iσj = ιk; it cannot be inconsistent with the implication as λj∧f (ιi · N)

is consistent). So let k > i.

• f (ιi · N) is inconsistent with f (ιk · N) implying f (ιi · N) ` f (ιk · N)→ f (σ · ιk · N)).

• f (ιi · N) is consistent with f (ιk · N). By Proposition 2.15 (entailprefix) in [1] f (ιk · N) `
f (ιi · N) and they select the same elements from ιi.

– f (σ · ιi · N) and f (σ · ιk · N) select exactly the same elements from σ. Let χ denote

the conjunction of those elements selected from σ, so f (σ · ιi · N) ≡ χ ∧ f (ιi · N)

and f (σ · ιk · N) ≡ χ ∧ f (ιk · N).

Consequently f (ιk · N)→ f (σ · ιk · N)) ≡ f (ιk · N)→ χ∧ f (ιk · N). This is equiv-

alent to (f (ιk · N)→ χ) ∧ (f (ιk · N)→ f (ιk · N)).

Now, f (σ · ιi · N) ` χ and f (ιk · N) → f (ιk · N) is a tautology and thus we have

f (σ · ιi · N) ` f (ιk · N)→ f (σ · ιk · N).

– f (σ · ιi · N) and f (σ · ιk · N) select different elements from σ. This means there is

at least one formula α in σ such that [f (σ · ιi · N) ` α and f (σ · ιk · N) ` ¬α] or

[f (σ · ιi · N) ` ¬α and f (σ · ιk · N) ` α].

λj ` f (ιk · N) → f (σ · ιk · N) and thus λj ∧ f (σ · ιi · N) ` α ∧ (f (ιk · N) → ¬α)

and hence λj ∧ f (σ · ιi · N) ` ¬f (ιk · N). (Analogous for f (σ · ιi · N) ` ¬α.) If we

can show that f (σ · ιi · N) alone already entails ¬f (ιk · N) we immediately have

f (σ · ιi · N) ` f (ιk · N)→ f (σ · ιk · N).

So let σ = σ′′ · α · σ′ where α is the first element in σ for which f (σ · ιi · N)

and f (σ · ιk · N) differ, i.e. both select the same elements from σ′ (and as shown

above also the same elements from ιi). f (α · σ′ · ιi · N) ≡ f (α · f (σ′ · ιi · N)) and

f (α · σ′ · ιk · N) ≡ f (α · f (σ′ · ιk · N)).

f (α · f (σ′ · ιi · N)) accepts α and f (α · f (σ′ · ιk · N)) rejects α. (Assume that

f (α · f (σ′ · ιi · N)) rejects α. Then f (σ′ · ιi · N) ` ¬α, but f (ιk · N) ` f (ιi · N)

and they select the same elements from σ′ so f (σ′ · ιk · N) ` ¬α — contradiction

as they are supposed to behave differently for α.)

Now let us look more closely at the structure of f (σ′ · ιi · N) and f (σ′ · ιk · N).

Let χ1 denote the conjunction of elements selected from σ′, let χ2 denote the con-

junction of elements selected from ιi = (ϕ1, . . . , ϕi) and let β denote the elements
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selected from (i+1)ιk = (ϕi+1, . . . , ϕk). That is f (σ′ · ιi · N) ≡ N ∧ χ1 ∧ χ2 and

f (σ′ · ιk · N) ≡ N ∧ χ1 ∧ χ2 ∧ β.

f (σ′ · ιk · N) rejects α. Hence N∧χ1∧χ2∧β ` ¬α implying N∧χ1∧χ2∧α ` ¬β.

This yields N ∧ χ1 ∧ χ2 ∧ α ` ¬N ∨ ¬χ2 ∨ ¬β which translates directly into

f (α · f (σ′ · ιi · N)) ` ¬f (ιk · N). Thus we have f (σ · ιi · N) ` ¬f (ιk · N) which we

wanted to show.

We have thus shown f (σ · ιi · N) `
∧

k∈Sj\{i}
(f (ιk · N) → f (σ · ιk · N)). We also know that

(f (ιi · N)→ f (σ · ιi · N)) ∧ f (ιi · N) ≡ f (σ · ιi · N) and hence λj ∧ f (ιi · N) ≡ f (σ · ιi · N).

4.2 No new beliefs when processing the rest of σ′

Let us sum up what we know so far. We have an agent’s revision history. We have replaced

each block of intermediate inputs by a logical chain of the form described before. All other

elements of the revision history remain unchanged. That is, beliefs before any block of

intermediate inputs remain unchanged — they are the same for the original and the modified

revision history.

σi ιi σj ιj

(. . . , ψi1, . . . , ψimi , ϕi1, . . . , ϕini , ψ(i+1)1, . . . , ϕ(j−1)nj−1
, ψj1, . . . , ψjmj , ϕj1, . . . , ϕjnj )

(. . . , λi1, . . . , λini , ϕi1, . . . , ϕini , λ(i+1)1, . . . , ϕ(j−1)nj−1
, λj1, . . . , λjnj , ϕj1, . . . , ϕjnj )

For recorded revision inputs after some block of intermediate inputs the previous section

told us the following. When calculating the agent’s beliefs after having received a recorded

revision input ϕjk, we go through the immediately preceding block of replaced intermediate

inputs λj1, . . . , λjnj . At that point we already have exactly the same beliefs as the agent had

for the original revision history, i.e. f
(
σi · ιi · σj · ιjk · N

)
.

Now we need to show that no further beliefs are introduced by processing the rest of the

modified sequence. All elements that remained unchanged are either already entailed or

inconsistent with the beliefs collected so far. So we only have to make sure that the elements

λ of all the other logical chains before the one that has been processed already don’t do any

harm. So let us consider an arbitrary λil, i < j and 1 ≤ l ≤ ni.

By construction λil ≡
∧

s∈S

(f
(
ιis · N

)
→ f

(
σi · ιis · N

)
) for a suitable S ⊆ {1, . . . , ni}. If we can

show that f
(
σi · ιi · σj · ιjk · N

)
entails all or is inconsistent with any of these implications,

we know that λil introduces no further belief as it is already entailed or is inconsistent with
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what has been collected so far. Note that ιi = ιis · s+1ι
i
ni

(for 1 ≤ s < ni) and ιi = ιis (for

s = ni). We will consider only the first case; the second one is analgous.

It holds that f
(
σi · ιi · σj · ιjk · N

)
= f

(
σi · ιis · s+1ι

i
ni
· σj · ιjk · N

)
entails f

(
ιis · N

)
or is in-

consistent with it. This is due to Proposition 1 using the following substitutions: σ = σi,

ρ1 = ιis, ρ2 = s+1ι
i
ni
·σj · ιjk, α = N. Also f

(
σi · ιis · s+1ι

i
ni
· σj · ιjk · N

)
entails f

(
σi · ιis · N

)
or

is inconsistent with it. This is due to Proposition 2.15 (entailprefix) in [1] using the following

substitutions: σ = σi · ιis, ρ = s+1ι
i
ni
· σj · ιjk, α = N. Consequently, for any combination of

these cases f
(
σi · ιi · σj · ιjk · N

)
entails the implication f

(
ιis · N

)
→ f

(
σi · ιis · N

)
or is incon-

sistent with it. Hence λil is either entailed or inconsistent with what has been collected so

far. In both cases λ does not modify the beliefs.

4.3 The existence of the logical chains

The final step is the proof of the existence of logical chains with the properties we as-

sumed. Recall the structure of the original revision history and the modified one, fo-

cussing a single block of intermediate inputs to be replaced: (. . . , ψ1, . . . , ψm, ϕ1, . . . , ϕn, . . . )

and (. . . , λ1, . . . , λn, ϕ1, . . . , ϕn, . . . ). The agent’s core belief N is known. Let σ denote

(. . . , ψ1, . . . , ψm) and let ι denote (ϕ1, . . . , ϕn). Our goal is that f (σ · ιj · N) is believed after

ϕj has been received and some logical chain has been processed. Now the rational explana-

tion is just the tool for constructing a logical chain. We simply translate our requirement

into the observation o = 〈(ϕ1, f (σ · ι1 · N) , ∅), . . . , (ϕn, f (σ · ιn · N) , ∅)〉. Recall that the con-

ditional beliefs corresponding to this observation are f ((ϕ1, . . . , ϕi) · N) ⇒ f (σ · ιi · N), the

antecedent being nothing but f (ιi · N).

Now we know that this observation has an explanation: [σ,N]. Hence N is o-acceptable and

the rational prefix construction using N as the initial core belief must find a suitable logical

chain (Propositions 2.49 and 2.50 (ratprefok and ratprefnotok) in [1]). The rational prefix

construction uses the material counterparts f (ιi · N)→ f (σ · ιi · N) of the conditionals. Note

that the resulting implications have exactly the form we proposed for constructing the λj .

As there are no non-beliefs in the observation each element in the logical chain constructed

will be a conjunction of such implications. How many elements will the logical chain have?

In every iteration not all of the remaining conditionals can be p-exceptional (this would

imply that N is not o-acceptable which it is), at least one conditional is eliminated in each

step. There are n conditionals which yields at most n+ 1 sets. However the last one will be

empty, the corresponding formula being a tautology. Hence there are at most n non-trivial

elements in the logical chain.2 And they have exactly the form proposed for the λj .

2There could be fewer than n elements in which case we can add tautologies without negative impact.
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5 Conclusion

We have thus shown that (in principal) we can use the rational closure to replace each block

of intermediate inputs by a block of the proposed length. For this the entire revision history

would have to be known. Of course we know neither the core belief nor the revision history

— otherwise we would not need complicated tools for reasoning about the agent’s beliefs,

we could simply calculate them. This paper merely proves the existence of such logical

chains. This yields an improved bound on the number of intermediate inputs that need to

be assumed.
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